Package 'tensorsem'

Title: Estimate structural equation models using computation graphs
Description: Use lavaan code to create structural equation models, use torch to estimate them. This package provides the interface between lavaan and torch.
Authors: Erik-Jan van Kesteren
Maintainer: Erik-Jan van Kesteren <[email protected]>
License: GPL-3
Version: 2.1.0
Built: 2025-01-12 03:19:52 UTC
Source: https://github.com/vankesteren/tensorsem

Help Index


Prepare data for tensorsem model

Description

This function prepares a dataframe for a tensorsem model. It first converts the variables to a design matrix, then centers it, and lastly converts it to a torch_tensor

Usage

df_to_tensor(df, dtype = NULL, device = NULL)

Arguments

df

data frame

dtype

data type of the resulting tensor

device

device to store the resulting tensor on

Value

Torch tensor of scaled and processed data

See Also

torch::torch_tensor(), stats::model.matrix()


Create a torch options list from a lavaan Model class.

Description

Create a torch options list from a lavaan Model class.

Usage

lav_mod_to_torch_opts(lav_mod)

Arguments

lav_mod

lavaan Model class object

Value

list of tensorsem options


Multivariate normal negative log-likelihood loss function for tensorsem nn module.

Description

Multivariate normal negative log-likelihood loss function for tensorsem nn module.

Usage

mvn_negloglik(dat, Sigma)

Arguments

dat

The centered dataset as a tensor

Sigma

The model() implied covariance matrix

Value

torch_tensor: scalar negative log likelihood


Create a lavaan parameter table from torch free_params output

Description

See examples in tensorsem for how to save the output.

Usage

partable_from_torch(pars, syntax)

Arguments

pars

data frame of parameter estimates (est) and their standard errors (se)

syntax

syntax of the original model


SEM fitting function

Description

SEM fitting function

Usage

sem_fitfun(S, Sigma)

Arguments

S

The observed covariance matrix

Sigma

The model implied covariance matrix

Value

torch_tensor: scalar loss function


Create a torch options list from lavaan syntax.

Description

Create a torch options list from lavaan syntax.

Usage

syntax_to_torch_opts(syntax)

Arguments

syntax

lavaan syntax

Value

list of tensorsem options


Compute jacobian of output wrt input tensor

Description

Compute jacobian of output wrt input tensor

Usage

torch_jacobian(output, input)

Arguments

output

Tensor vector of size Po

input

Tensor vector of size Pi

Value

jacobian: Tensor of size Pi, Po


Structural equation model with a Torch backend

Description

Function for creating a structural equation model

Usage

torch_sem(syntax, dtype = torch_float32(), device = torch_device("cpu"))

Arguments

syntax

lavaan syntax for the SEM model

dtype

(optional) torch dtype for the model (default torch_float32())

device

(optional) device type to put the model on. see torch::torch_device()

Details

This function instantiates a torch object for computing the model-implied covariance matrix based on a structural equation model. Through torch, gradients of this forward model can then be computed using backpropagation, and the parameters can be optimized using gradient-based optimization routines from the torch package.

Because of this, it is easy to add additional penalties to the standard objective function, or to write a new objective function altogether.

Value

A torch_sem object, which is an nn_module (torch object)

Fields

free_params

Vector of free parameters

Methods

⁠$initialize()⁠

The initialize method. Don't use this, just use torch_sem()

Arguments
  • syntax lavaan syntax for the SEM model

  • dtype (optional) torch dtype for the model (default torch_float32())

  • device (optional) device type to put the model on. see torch::torch_device()

Value

A torch_sem object, which is an nn_module (torch object)

⁠$forward()⁠

Compute the model-implied covariance matrix. Don't use this; nn_modules are callable, so access this method by calling the object itself as a function, e.g., my_torch_sem(). In the forward pass, we apply constraints to the parameter vector, and we create matrix views from it to compute the model-implied covariance matrix.

Value

A torch_tensor of the model-implied covariance matrix

⁠$inverse_Hessian(loss)⁠

Compute and return the asymptotic covariance matrix of the parameters with respect to the loss function

Arguments
  • loss torch_tensor of freshly computed loss function (needed by torch for backwards pass)

Value

A torch_tensor, representing the ACOV of the free parameters

⁠$standard_errors(loss)⁠

Compute and return observed information standard errors of the parameters, assuming the loss function is the likelihood and the current estimates are ML estimates.

Arguments
  • loss torch_tensor of freshly computed loss function (needed by torch for backwards pass)

Value

A ⁠numeric vector⁠ of standard errors of the free parameters

⁠$partable(loss)⁠

Create a lavaan-like parameter table from the current parameter estimates in the torch_sem object.

Arguments
  • loss (optional) torch_tensor of freshly computed loss function (needed by torch for backwards pass)

Value

lavaan partable object

⁠$fit(dat, lrate, maxit, verbose, tol)⁠

Fit a torch_sem model using the default maximum likelihood objective. This function uses the Adam optimizer to estimate the parameters of a torch_sem

Arguments
  • dat dataset (centered!) as a torch_tensor

  • lrate learning rate of the Adam optimizer.

  • maxit maximum number of epochs to train the model

  • verbose whether to print progress to the console

  • tol parameter change tolerance for stopping training

Value

Self, i.e., the torch_sem object with updated parameters

⁠$loglik(dat)⁠

Multivariate normal log-likelihood of the data.

Arguments
  • dat dataset (centered!) as a torch_tensor

Value

Log-likelihood value (torch scalar)

See Also

df_to_tensor()


Half-vectorization of square matrices

Description

Half-vectorization of square matrices

Usage

torch_vech(x)

Arguments

x

square (symmetric) matrix tensor

Value

column vector of stacked lower-diagonal elements


Constructs index vector for transforming a vech vector into a vec vector to create an n*n symmetric matrix from the vech vector. tensor$index_select(0, idx)$view(3,3)

Description

Constructs index vector for transforming a vech vector into a vec vector to create an n*n symmetric matrix from the vech vector. tensor$index_select(0, idx)$view(3,3)

Usage

vech_dup_idx(n)

Arguments

n

size of the resulting square matrix

Value

array containing the indices